

THE OFFICE OF THE STATE CHIEF INFORMATION OFFICER
ENTERPRISE TECHNOLOGY STRATEGIES

North Carolina Statewide Technical Architecture

System Integration Domain

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 2

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

System Integration Domain

Initial Release Date: September 11, 2003 Version: 1.0.0
Revision Approved Date:
Date of Last Review: March 17, 2004 Version 1.0.1
Date Retired:
Architecture Interdependencies:
Reviewer Notes: Reviewed and updated office title and copyright date. Added a hyperlink for the ETS email –
March 17, 2004.

 2004 State of North Carolina
Office of Enterprise Technology Strategies

 PO Box 17209
 Raleigh, North Carolina 27699-7209

 Telephone (919) 981-5510
ets@ncmail.net

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying, recording or by any informational storage system without written permission from the

copyright owner.

mailto:ets@ncmail.net

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 3

Systems Integration - Integration Architecture

Principle 5.00.01 An Integration Architecture enables the inter-operation of multiple
technologies into a single integrated network.

Rationale:
� Integration provides a bridge between the hetergeneous operational applications and platforms.

An effective architecture ties together the mix of platforms, operating systems, transports, and
applications.

� Integration of business applications between agencies and vendors or other agencies supports
electronic commerce.

Systems Integration - Integration Architecture

Principle 5.00.02 An Integration Architecture addresses the correlating components of data
interchange, business processing issues, and end-user presentation.

Rationale:
� The Integration Architecture encompasses the mulitple layers of new and existing systems and

the middleware in between.

Systems Integration - Integration Architecture

Principle 5.00.03 An Integration Architecture meets the needs of linking heterogeous
operational application systems while protecting existing investments.

Rationale:
� The Integration Architecture should take into account the need to use existing workstations,

peripherals and existing transports to access existing and new applications.

Systems Integration - Integration Architecture

Principle 5.00.04 When making integration decisions, the life span of the solution is a key
factor.

Rationale:
� Temporary solution may be engineered very differently than a long-term solution. Cost and

effort need to be taken into consideration when providing a solution that is only needed on a
temporary basis.

� Short-term solutions are often hard-wired and often have low performance. They are designed
to be replaced or easily removed. Cost and effort should also be considered for a short-term
solution.

� Long term solutions must be standardized, adaptable, and engineered for high performance.

Systems Integration - Integration Architecture

Principle 5.00.05 Integration Architecture relies on middle service tiers such as interface
engines, database gateways, messaging, integration services, and third party tools.

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 4

Rationale:
� It is more cost effective and easier to maintain applications that use middle service tiers than to

modify multiple legacy applications.
� New N-tier applications still need access to the legacy information stored throughout the

enterprise.
� Refer to the Middleware chapter for more information middle service tiers not covered in this

chapter.

Systems Integration - Integration Architecture

Principle 5.00.06 Minimize the impact to existing application systems.

Rationale:
� To the extent possible, the Integration Architecture should enable new applications to use

existing resources with minimal disruption.
� Where possible, use non-invasive techniques for integration.
� Integration requires good communication infrastructure. If the basic network infrastructure is

not in place, a single integrated network of application communication cannot be achieved.
(Refer to the Network Domain.)

Systems Integration - Integration Architecture

Principle 5.00.07 Use statewide technologies whenever possible.

Rationale:
� To the extent possible, use the same technologies in the Integration Architecture that are used

in the Statewide Technical Architecture.
� Limit the heterogeneity of the technology used in order to simplify integration and enable

migration to future technologies.

Systems Integration - Integration Architecture

Principle 5.00.08 Provide maximum flexibility to integrate heterogeneous systems when
enhancing existing end-user functionality through the use of a middle service tier.

Rationale:
� Implement the middle tier with standards whenever possible.

Systems Integration - Integration Architecture

Principle 5.00.09 Use existing integration solutions whenever possible.

Rationale:
� Instead of building a new integration technique from scratch, use an existing vendor solution

that answers the specific integration needs of an application system.

Systems Integration - Integration Architecture

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 5

Principle 5.00.10 Include centralized security management as part of the Integration
Architecture.

Rationale:
� Refer to the Security and Network Domain.

Systems Integration - Application Communication Middleware

Principle 5.00.11 Using application communication middleware is required in a
heterogeneous, distributed environment.

Rationale:
� The tiers of a distributed application, which often run on different hardware and operating

systems, must communicate.
� Application communication middleware enables both inter- and intra-application

communications.

Systems Integration - Application Communication Middleware

Principle 5.00.12 Using message-oriented middleware changes the fundamental design for
building distributed applications.

Rationale:
� Message allows asynchronous processing so applications can continue processing after a

message is sent.

Systems Integration - Application Communication Middleware

Principle 5.00.13 Using remote procedure calls (RPCs) offer a good migration strategy.

Rationale:
� RPCs are the easiest transition for mainframe programmers. An RPC is simply a subroutine

even though it is running a business rule on the network.
� RPCs are a mature technology. They are already bundled with many operating systems and

databases.

Systems Integration - Application Communication Middleware

Principle 5.00.14 Minimize the use of distributed units of work.

Rationale:
� Distributed transaction monitors are becoming less and less a requirement as high speed

networks and messaging subsystems are deployed.
� The need for a transaction monitor can be eliminated or reduced by using features of message

oriented middleware, combined with application design.

Systems Integration - Application Communication Middleware

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 6

Principle 5.00.15 Do not use database middleware for application communication

Rationale:
� Database middleware has limited usefulness. It allows an application component to access data,

thereby supporting a two-tier application design.
� Database middleware does not have the capability to provide all levels of inter-component

communications. Stretching its use to inappropriate environments will ultimately result in
systems that have performance problems.

Systems Integration - Application Communication Middleware

Principle 5.00.16 Using a broker facilitates reuse and shortens development cycles.

Rationale:
� A broker provides access to common services that can be reused and shared, thus reducing

development costs.
� The state can reduce the resources spent on developing and maintaining "islands of

applications," which include redundant code. Application developers can focus on new work
rather than rework.

� New applications will be combined of new business rules and common shared business rules.
Since part of the application is "pre-written" and "pre-tested," delivery of the total application
should result more quickly.

Systems Integration - Application Communication Middleware

Principle 5.00.17 Precede selection of application development tools with an application
communication middleware strategy.

Rationale:
� In the long term, use of middleware by many applications is of more strategic importance than

any one application development tool. Middelware selection should drive the choice of
application development tools, not vice versa.

� A range of communication methods is available through middleware. A combination of
products may be required.

Systems Integration - Application Communication Middleware

Principle 5.00.18 Select third-party middleware rather than middleware supplied with a
development tool.

Rationale:
� De-coupling the middleware from the application development tool provides more flexibility in

changing development tools in the future. For example, integrated CASE tools often provide
third-party message oriented middleware as well as their own, proprientary message oriented
middleware.

� When given the choice of proprietary middleware versus third party middleware, select the
third party middleware option. For instance, message oriented middleware provided by the

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 7

integrated CASE tool vendor limits flexibility and links to a specific vendor and product
strategy more closely.

� If message oriented middleware is linked directly to a specific development package, then there
is the risk of limited usefulness with other applications that are not developed with the same
tool.

Systems Integration - Application Communication Middleware

Principle 5.00.19 Document application programming interfaces (APIs) and interface
definition language (IDL).

Rationale:
� APIs and IDL for components and services must be documented so that developers know

where they are and how to use them.
� For more information about components and services, refer to the Application and

Componentware Architecture chapters.

Systems Integration - Application Communication Middleware Types

Best Practice 5.01.01 When possible, design applications to use asynchronous communication.

Rationale:
� Message oriented middleware supports asynchronous communications.
� Asynchronous messaging requires a distinctly different design. It is implemented with a very

basic set of message oriented middleware commands.
� Message oriented middleware provides a reliable form of communication.
� Asynchronous communication offers more flexibility than synchronous communication. The

downstream application has more control over its operation.

Systems Integration - Application Communication Middleware Types

Best Practice 5.01.02 Use Remote Procedure Calls (RPCs) when message oriented
middleware is not available.

Rationale:
� RPCs provide an acceptable, albeit limited, method of communication between software

components.
� RPCs require synchronous communication and are less efficient in the use of resources; they tie

up resources from both the client and the server until the service has been provided.
� Synchronous communication requires error handling in the client application if the request is

made while a server is unavailable.

Systems Integration - Application Communication Middleware Types

Best Practice 5.01.03 Use distributed transaction monitors only when distributed
transactional integrity is required.

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 8

Rationale:
� Transaction processing monitors offer significant functionality in addition to transaction

management. Using transaction processing monitors when other middleware services suffice
may cause unnecessary overhead and may result in performance problems.

� Since distributed transactions are composed of multiple discreet functions, parts of transactions
may be at risk for some period of time. Designing applications to eliminate the distributed units
of work reduces the risk of transaction failure.

� When distributed transactional integrity is needed, use a TP monitor rather than the transaction
management capability of a database management system.

Systems Integration - Application Communication Middleware Brokers

Best Practice 5.02.01 Manage a statewide broker as a strategic infrastructure component.

Rationale:
� The service broker is a critical part of the distributed computing environment because it allows

the technical architecture to meet the three goals of efficiency, sharing of information and
agency autonomy.

� Strategic infrastructure benefits all agencies and should be centrally managed.

Systems Integration - Application Communication Middleware Brokers

Standard 5.02.01 Use of the service broker is required for inter-application communication.

Rationale:
� The service broker was put in place due to the lack of standards for inter-application

communication types such as RPC, MOM, and TP monitors. (See Technical Topic 1,
Application Communication Middleware Types, the Standards section, for more information.)

� While the lack of standards is not an issue for development of any single application, it poses
problems for communication between applications. The broker is proposed as a standard
communication paradigm for inter-application communication.

Systems Integration - Application Communication Middleware Brokers

Best Practice 5.02.02 Be sure a statewide broker is independent of code development tools.

Rationale:
� The purpose of the service broker is to facilitate communication in a multi-platform, multi-

language environment. If the service broker is tied to a single vendor's product, then the goal
of facilitating communication in a diverse environment has not been met.

� Implementing a service broker that supports multiple vendors' products helps protect the state
from being negatively impacted by market forces.

Systems Integration - Application Communication Middleware Brokers

Best Practice 5.02.03 Be sure a statewide broker provides a suite of communication
middleware features.

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 9

Rationale:
� A best of breed approach should be taken when selecting the application communication

middleware.

Systems Integration - Application Communication Middleware Brokers

Best Practice 5.02.04 Use the state's inter-application middleware, the service broker
interface, for inter-application communication between state-developed applications. For
interfaces with other applications, use the Interface Engine.

Rationale:
� State-developed applications gain performance and flexibility by using the service broker for

inter-application communication.
� In-house or out-sourced custom-developed applications requiring inter-application

communication should be capable of using a service broker. Applications sharing or requiring
services from external application systems should provide the capability to use the standard
inter-application communication middleware architecture.

� In instances where the application code cannot be modified, such as purchased applications
where the state does not have rights to source code, use the interface engine. For more
information about application integration, refer to the Integration Architecture chapter.

� For more information on the Interface Engine, see the Integration Architecture chapter.

Systems Integration - Application Integration

Standard 5.03.01 Clearly define Application Interfaces.

Rationale:
� To integrate applications for which the state has no source code rights, application interfaces

must be clearly defined in order to allow reliable communication between applications.
� To facilitate puchase of best-of-breed software while easing application integration issues, the

application interfaces must be clearly defined.

Systems Integration - Application Integration

Best Practice 5.03.01 Anticipate future usage.

Rationale:
� Whenever an application integration is constructed, anticipate future usage so the technology

will be adaptable and scaleable.
� For example, an organization may not want to use a screen scraping interface if future

requirements are for faster performance or additional information that is not supplied by an
existing terminal screen.

Systems Integration - Application Integration

Standard 5.03.02 The message structure must be documented.

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 10

Rationale:
� A message or transaction is the mechanism for extracting data from an application or sending

data to an application.
� Programmers integrating applications need to know record length and type (ie, whether it is a

variable or fixed length record, and if it is variable, the delimiting characters used to separate
the fields), and know which fields are optional versus required.

� A description of the data for each field is also necessary.
� Explanations and examples of record formats and field descriptions are helpful and should be

included.

Systems Integration - Application Integration

Best Practice 5.03.02 Use application integration strategy for online transaction program
(OLTP) application systems, not decision support systems (DSS).

Rationale:
� Data warehouses or other solutions shouuld be used in decision support applications. (For

more information on data warehouses, refer to the Information Architecture chapter.)

Systems Integration - Application Integration

Standard 5.03.03 The application must be able to transmit and receive messages using a
client/server model.

Rationale:
� The client is the process that sends or originates the message. The server is the process that

receives the message.
� Clients and servers may communicate using TCP/IP and sockets, or other communication

protocols, such as Serial and FTP, as long as they perform the same transmit and receive
functionality.

� Packetization characters, which identify the start and end block strings, and message
acknowledgement format must also be provided.

Systems Integration - Application Integration

Best Practice 5.03.03 Design an integration solution that does not write directly to an
operational database.

Rationale:
� Existing application logic or busines rules should be used when updating an application

database.
� An external user or application could inadvertently corrupt operational data.

Systems Integration - Application Integration

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 11

Best Practice 5.03.04 Consider a screen scraping solution when an application link needs to
be non-invasive and there are no other non-invasive interfaces available to an application
system.

Rationale:
� Using existing terminal screens can be a viable alternative to re-coding a legacy or purchased

application for a program interface. Legacy and purchased application screen formats are
normally static and contain the information needed by a new application.

� If screen scraping is used through an interface engine, it can be more reliable and stable than a
PC screen scraping solution for operational applications.

Systems Integration - Application Integration

Standard 5.03.04 Purchase line-of-business application software rather than custom
developing it whenever possible.

Rationale:
� Purchase line-of-business application software can permit the state to respond to business

needs in a more timely manner than custom developing software.
� Published APIs are insuffient because their use requires custom development of state

applications and it may be impossible to interface two purchased applications. Use of an
interface engine provides maximum flexibility.

Systems Integration - Application Integration

Best Practice 5.03.05 Use direct program-to-program intefaces for high transaction volumes.

Rationale:
� Direct program-to-program interfaces pass only the required information between applications,

so performance and throughput is at the optimal level.

Systems Integration - Application Integration

Best Practice 5.03.06 When designing an application integration solution using an interface
engine, give careful consideration to the design and planning of the application interfaces and
connectivity.

Rationale:
� At the beginning of the design stage, involve application developers who are knowledgeable in

the business rules and interfaces to each system that needs to be accessed.
� Some application systems may have multiple entry or exit points that can be used. If a non-

invasive solution is selected, capitalize on using the entry or exit points that best apply to your
application needs.

Systems Integration - Electronic Data Interchange (EDI)

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 12

Best Practice 5.04.01 EDI should be fully integrated into the business process and the
computer applications that support the process.

Rationale:
� The maximum benefits of EDI can be achieved when EDI is integrated into the business

process.
� Focus on the business process supported by EDI rather than on the technology used by EDI.
� Maintain an audit trail that supports tracking and control for EDI transactions. Entries should

be maintained for each handoff of a transaction between EDI application elements and
between trading partners.

� Where practical, use reciprocal transactions to achieve application level acknowledgement of
electronic transactions.

Systems Integration - Electronic Data Interchange (EDI)

Standard 5.04.01 Use ANSI X12 or UN-EDIFACT for Electronic Data Interchange (EDI).

Rationale:
In the United State, most ED transactions comply with ANSI standards approved by the ANSI X12
committee. These standards cover a wide range of commercial interaction, including, but not
limited to the following:

� Requition, request for quotation, purchase order, purchase order change.
� Vehicle service order, product service claim, and product service claim response.
� Air freight information, motor carrier bill of lading, U.S. Customs status information, shipping

instructions.
� Remittance, credit/debit adjustment, mortgage credit report, real estate title evidence,

electronic filing to tax return.
� Student load application, student educational record, student enrollment verification.Most

international EDI transactions comply with the UN-EDIFACT standards endorsed by the
United Nations. EDIFACT standards are similar to ANSI X12 standards. EDIFACT
standards cover EDI for administration, commerce, and transport. Note the ANSI s
committed to migrating the X12 standards to be compatible with UN-EDIFACT standards.

Systems Integration - Electronic Data Interchange (EDI)

Best Practice 5.04.02 Use EDI to automate frequently used business transactions.

Rationale:
� EDI is cheaper, faster, and more accurate than performing the same transactions manually.
� EDI is appropriate for agency-to-agency transactions should exchange mapped data, without

requiring the trading partners to go through the generation/interpretation process. This avoids
the requirements that both internal trading partners buy and maintain EDI software.

� The state may require EDI.

Systems Integration - Electronic Data Interchange (EDI)

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 13

Best Practice 5.04.03 Use a single EDI software package for the entire enterprise, even if there
are mulitple EDI servers.

Rationale:
� A single best-of-breed EDI software package reduces the complexity of implementing and

managing EDI across the state.
� Business process and transaction volume may require additional installation of EDI software,

but all should be the same EDI package.

Systems Integration - Electronic Data Interchange (EDI)

Best Practice 5.04.04 Use industry standard for transactions that are being performed
electronically.

Rationale:
� For commerce between agencies, or between agencies and US-based trading partners, use the

latest version of the ANSI X12 transaction set.
� Be aware that standards will evolve over time, and all participating trading partners will need to

synchronize when a newer version is implemented.
� If there are no standards for transactions conducted frequently, define some with the major

trading partners.

Systems Integration - Electronic Data Interchange (EDI)

Best Practice 5.04.05 Manage EDI as a critical application.

Rationale:
� EDI has a significant impact on the state's business. Even when EDI software is deployed on

a PC-based server, it must be managed as a mission-critical application.
� Successful EDI implementations require transaction volume and capacity planning. (Refer to

the System Management Architecture chapter for more information about capacity planning.)
� Secure EDI transactions with a level of security appropriate for the business function being

performed.

Systems Integration - Electronic Data Interchange (EDI)

Best Practice 5.04.06 Use a value added network (VAN) for data transmission to outside
trading partners.

Rationale:
� Direct file transfer (eg, "batch feeds") is acceptable for EDI performed within an agency or

between agencies.
� Direct EDI introduces additional complexity into the transmission and receipt of transactions

to outside trading partners.
� Look for opportuntity to use the Internet for EDI data transmission when standard software is

available to handle Internet EDI.

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 14

� When performing financial EDI, also use an automated clearinghouse to manage the funds
transfer portion of finanancial transactions.

Systems Integration - Electronic Data Interchange (EDI)

Best Practice 5.04.07 Purchase - do not build - software to perform EDI translation,
formatting, and transmission to a VAN.

Rationale:
� Start small with a single transaction set to a single key trading partner; add additional trading

partners and transactions after the others are running smoothly.

Systems Integration - Electronic Data Interchange (EDI)

Best Practice 5.04.08 Use an EDI solution over an interface engine solution if possible.

Rationale:
� For EDI transaction sets, the EDI software has built-in capability to format transaction data.
� When using EDI, only one interface program is need: the originating application (for outgoing

transactions) or the target application (for incoming transactions).

Systems Integration - Electronic Data Interchange (EDI)

Best Practice 5.04.09 If EDI software does not include data mapping capability, use an
interface engine, rather than custom programming for data mapping.

Rationale:
� Data mapping using an interface engine is noninvasive.

Systems Integration - Data Access Integration

Best Practice 5.05.01 Use as few middleware layers as possible when implementing a database
gateway.

Rationale:
� Additional layers of middleware in between an application and the database gateway could

hinder performance of mission critical applications. For example, an application that needs to
access a database gateway can implement an ODBC middleware layer that ultimately accesses
the gateway middleware. Application performance can be increased if the application was
written to make direct calls to the gateway middleware, omitting the ODBC layer.

� If there are fewer middle conversion tiers, there are less operational layers to maintain in the
event of maintenance or upgrades. For example, if there is a change to an application database
location, or an upgrade or maintenance update to the middleware software, it can effect all end
user workstations and servers that access that application.

Systems Integration - Data Access Integration

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 15

Standard 5.05.01 There is no Remote Procedure Call (RPC) standard. Use the state of North
Carolina's service broker for inter-application communication.

Rationale:
� Even with an RPC that is endorsed by a vendor neutral party, such as the Open Group, there is

no standard RPC.
� RPCs are available from different vendors, such as the Open Group's DCE RPC, Sun

Microsystem's ONC/RPC, and Microsoft's RPC.
� Each vendors version has a different application programming interface and they do not inter-

operate with one another.

Systems Integration - Data Access Integration

Best Practice 5.05.02 Balance the type of data access method implemented with required
performance needed by the application end users and the impact to the existing operational
databases.

Rationale:
� If the wrong data access method is selected, the performance may not match the application

needs.
� A solution that is good for a new application may adversely impact existing operational

applications.

Systems Integration - Data Access Integration

Standard 5.05.02 There is no Message Oriented Middleware (MOM) standard. Use the state
of North Carolina's service broker for inter-application communication.

Rationale:
� At present, all message oriented middleware is proprietary. Products from different vendors

have different application programming interfaces, which do not inter-operate with one
another.

Systems Integration - Data Access Integration

Best Practice 5.05.03 Keep the integration strategy as simple as possible.

Rationale:
� The more complicated the strategy, the more difficult it is to maintain and change.

Systems Integration - Data Access Integration

Standard 5.05.03 There is no distributed transaction processing (TP) monitor standard. Use
the state of North Carolina's service broker for inter-application communication.

Rationale:

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 16

� The applications coordinated by a tranacation monitor which will run on different platforms
with access to different databases and resource managers.

� The applications are often developed using different tools and have no knowledge of one
another.

� Industry standards specify how a TP monitor interfaces to resource managers, other TP
monitors, and its clients.

� X/Open XA specification defines specfications for two-phase commits that work with
distributed databases.

� X/Open TX standard defines transactions.
� X/Open X/ATMI provides a standard transaction management interface.

Systems Integration - Data Access Integration

Best Practice 5.05.04 Code data integrity verification rules into the DBMS whenever possible,
particularly when external users and programs will be writing data directly to the DBMS.

Rationale:
� Since most DBMS vendors can code triggers and rules into the database, it is recommended to

use this technology wherever possible in order to ensure data integrity.
� For more information on databases, refer to the Data Architecture chapter.

Systems Integration - Data Access Integration

Best Practice 5.05.05 Separate decision support systems (DSS) from online transaction
processing (OLTP) database whenever possible.

Rationale:
� If this practice is feasible, it will reduce the impact of ad hoc and large queries from decision

support systems onto production operational application databases that are used by online
users for day-to-day operations.

� For more information on database architecture, refere to the Data Architecture chapter.

Systems Integration - Terminal Integration

Best Practice 5.06.01 Design new application systems with the user interface as a separate
application tier.

Rationale:
� If a GUI is not designed as a separate tier, and a character-based terminal interface to the

client/server application is not possible, terminal integration will not be successful.
� When building a client/server application that needs to be accessed by a wide variety of end

users and platforms, ensure that it can be accessed by any type of user interface, including
graphical user interface and character-base interfaces.

Systems Integration - Terminal Integration

Best Practice 5.06.02 Base the user interface design on the targeted end user platform.

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

 17

Rationale:
� If the inteface is similar to existing user interfaces, the learning curve is reduced and the end

users can easily become productive on new systems.
� If a GUI-based interface is used, conform to established GUI-based standards.
� If a 3270 terminal interface is used, design the interface similar to existing screen interfaces that

are used by legacy systems.

Systems Integration - Terminal Integration

Best Practice 5.06.03 Implement as few comminications tiers are possible.

Rationale:
� With fewer tiers the architecture will be simpler and easier to maintain.

